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Abstract

Dementia is an increasing problem for the aging population that incurs high medical costs,

in part due to the lack of available treatment options. Accordingly, early detection is critical

to potentially postpone symptoms and to prepare both healthcare providers and families for

a patient’s management needs. Current detection methods are typically costly or unreliable,

and could greatly benefit from improved recognition of early dementia markers. Identifica-

tion of such markers may be possible through computational analysis of patients’ electronic

clinical records. Prior work on has focused on structured data (e.g. test results), but these

records often also contain natural language (text) data in the form of patient histories, visit

summaries, or other notes, which may be valuable for disease prediction. This thesis has

three main goals: to incorporate analysis of the aforementioned electronic medical texts into

predictive models of dementia development, to explore the use of topic modeling as a form of

interpretable dimensionality reduction to improve prediction and to characterize the texts,

and to integrate these models with ones using structured data. This kind of computational

modeling could be used in an automated screening system to identify and flag potentially

problematic patients for assessment by clinicians. Results support the potential for unstruc-

tured clinical text data both as standalone predictors of dementia status when structured

data are missing, and as complements to structured data.
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1 Introduction

Dementia is an increasing problem for the aging population, and the 6th leading cause of

death in the US [Alzheimer’s Association, 2014]. Approximately 35 million people worldwide

suffer from some form of dementia, and this number is expected to double by the year 2030

[Prince et al., 2013]. The most common form of dementia is Alzheimer’s disease, which has

no known cure and has limited treatment options. Thus clinical care for dementia focuses on

prolonged symptom management, resulting in high personal and financial costs for patients

and their families, straining the healthcare system in the process. The cost of Alzheimer’s

disease care for the year 2014 is estimated at $214 billion dollars in the US [Alzheimer’s

Association, 2014]. Early detection is critical for potential postponement of symptoms, and

for allowing families to adjust and adequately plan for the future. Despite this importance,

current detection methods are costly, invasive, or unreliable, with most patients not being

diagnosed until their symptoms have already progressed. Improved understanding and recog-

nition of early warning signs of dementia would greatly benefit detection and management

of the disease.

With the advent of electronic clinical record-keeping comes the potential for large-scale

computational analysis of patients’ clinical data to understand or discover warning signs

and development of medical conditions. At a coarse-grained level, data can be considered

either structured or unstructured. The former refers to numerical or categorical data, such

as test results or patient demographics, while the latter generally refers to text data, such as

doctors’ notes or summaries. Each of these data types provides its own set of challenges and
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benefits, but most prior research has focused on structured data. Unstructured text, however,

presents a potentially rich source of information that may be more easily interpretable by

humans. The ability to predict dementia development based on either or both of these

data sources in patients’ electronic records would be useful for intelligent support systems

which could automatically flag potentially problematic cases for further human evaluation,

reducing the need for laborious manual inspection, as well as the risk of missed dementia

cases. Furthermore, integration of these two data types may provide additional benefits for

such intelligent support systems. From a computer science perspective, surmounting the

technical challenge of data fusion contributes to predictive modeling in the medical domain.

The inclusion of unstructured text data is a critical contribution of this thesis. Structured

data will often be absent from clinical records due to issues of cost or availability, whereas

text notes will be present for nearly every visit of a patient. Moreover, text notes in medical

records are a source of natural language which potentially more flexibly encode the diagnostic

expertise and reasoning of the clinical professionals who write them. Processing and compu-

tationally analyzing natural language remains a formidable task, but insights gleaned from

it may also be more intuitively interpretable by humans, and thus may translate better into

actual clinical practice. In particular, this thesis models text in three stages: bag-of-words,

tf-idf weighting, and topic modeling with Latent Dirichlet Allocation (LDA). In bag-of-words,

a text document is represented in terms of the words it contains, along with their raw fre-

quencies in that document. Tf-idf, or term frequency - inverse document frequency, is an

extension on top of bag-of-words in which words (terms) are weighted based on a combina-

tion of their frequency within a given document and their frequency throughout the corpus,

rewarding words which appear more times in fewer documents.1 Latent Dirichlet Allocation,

or LDA, is a topic modeling algorithm which attempts to infer groups (or topics) of statis-

tically related words in a corpus of documents, and is explored here as a form of textually

interpretable dimensionality reduction. Each of these processes is explained in detail later

1While tf-idf involves a form of bag-of-words model, in this thesis the term bag-of-words is used for the
term frequency scenario.

2
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in Section 6.1. This thesis addresses the question of whether or not these data and analyses

can be useful for a supervised machine learning task of classifying the dementia-progression

status of subjects in a study on Alzheimer’s disease.

In addition to these contributions, this thesis also explores the integration of unstructured

data with structured data through two different methods. The inputs for classification are

vectors of feature values for every data point. The first, more straightforward integration

method takes advantage of this common format by combining the vectors of features com-

puted independently from structured and unstructured data. The second, more sophisticated

integration method instead leverages probabilistic outputs of two classification models, one

for each data type in isolation. The results of these experiments constitute methodological

and practical contributions to data mining of electronic clinical records, as well as semantic

data integration techniques in general.

This thesis is organized as follows. Chapter 2 elucidates the necessary background infor-

mation about electronic medical data, domain-specific methodological considerations, and

modeling techniques needed to comprehend the work presented in subsequent chapters.

Chapter 3 orients the reader through a review of the literature on medical data mining,

shedding light on unanswered research questions and further motivating this thesis. Chapter

4 describes the source and characteristics of the dataset, followed by an exploratory overview

of the text corpus constructed from it. Chapter 5 formally outlines the problems to be ad-

dressed and hypothesizes their experimental outcomes. Chapter 6 lays out the complete

details of all methodology, including data modeling, implementation decisions, and evalu-

ation procedures. Chapter 7 presents and discusses the results of performed experiments.

Finally, Chapter 8 summarizes the conclusions, contributions, limitations, and potential fu-

ture work.

3
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2 Background

This chapter provides an overview of concepts needed to understand the work presented in

this thesis. Namely, it is important for the reader to understand what kinds of data are

available in electronic clinical records, what distinctions can be made among them, and how

they fit into the context of studying dementia and Alzheimer’s disease. Additionally, some

background on supervised machine learning and text modeling are also required.

2.1 Electronic Clinical Records

Electronic clinical records are digital collections of information obtained from clinical services

received by patients. As with paper records, these are typically organized chronologically

with metadata indicating the calendar dates of when each piece of information was entered.

Data contained in these records are typically distinguished by the format of their stored rep-

resentations, with numerical and categorical data termed structured, and free text termed

unstructured. Examples of structured data include patient demographics, such as age, sex,

or ethnic background, as well as medical test results, such as routine blood work, measure-

ments from imaging scans, or scores on administered verbal exams and questionnaires. This

straightforward numerical representation makes structured data attractive for computational

studies. However, the rigid nature of this tabular structure may fail to accommodate im-

portant pieces of information when considering a specific and poorly understood medical

interest such as dementia or Alzheimer’s disease. Alternatively, unstructured text data con-

sist of notes and summaries written by doctors or other clinical professionals who treat,

4
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care for, or otherwise interact with a patient. From a computational perspective, handling

text (i.e. natural language) data is a challenging and non-trivial task. Language use, even

in the domain of medicine, can vary drastically between two users due to the ambiguous

and expressive nature of language itself, as well as domain-specific factors, such as different

medical school educations or backgrounds of the clinicians, recent vs. dated terminology,

non-standard or personal abbreviations, preferences for ellipsis, and so on. Despite these

difficulties, natural language is arguably a more interpretable format for humans and may

contain information that is not feasibly encoded in a structured format (e.g. with respect to

social context or behavioral health).

2.1.1 Data Considerations for Studying Dementia

When applying computational techniques to problems in the medical domain, it is important

to consider the nature of the clinical condition being examined, as its specific characteristics

may impact the usability or efficacy of certain data and methodology. This is particularly

true in the case of dementia and Alzheimer’s disease. As mentioned earlier, the distinction

between structured and unstructured data is based on digital representation of the informa-

tion, as either a number/category or as free text, respectively. However, this thesis is not

merely concerned with data processing, but with the applicability and meaningfulness of

the results obtained through computational means, which may be enhanced by finer-grained

distinctions, particularly within the structured data. For example, dementia is typically di-

agnosed based on lab tests and/or scores on verbally administered cognitive exams. Both of

these are considered structured data since they are both represented as metrics or scores, yet

they are fundamentally different in how they are administered. A cognitive exam involves

the intervention of another person’s mind, experience, and expertise to evaluate a patient’s

cognition, as opposed to a typical lab test, which measures quantities in or of a patient’s

body. Benefits of this distinction might fail to be detected if data were only distinguished by

their structured vs. unstructured format. This particular example comes into play later in

5
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this thesis, where experimental work with integrating structured data will specifically report

on including vs. excluding cognitive assessment scores.

Another potential issue that arises when studying dementia through clinical records is

the availability of relevant structured data. Two major categories of dementia-related tests

are cerebrospinal fluid markers and brain volume measurements obtained from imaging scans

like Magnetic Resonance Imaging (MRI), which can be considered invasive and expensive.

Not surprisingly, such test results are often missing from records of patients who are not

already suspected of having dementia, and too infrequent among the patients who are. This

is a major motivation for the inclusion of unstructured text data, which does not suffer the

same availability issues, as note-taking and summarization of visits is standard practice in

clinical settings, and is thus usually available for nearly all patient visits.

Finally, dementia is a cognitive condition also characterized by behavioral and social

changes of an afflicted individual. Such changes may be addressed by the cognitive exams

mentioned earlier, but those are typically not administered until later in disease progression.

It is possible that such information may already be encoded or referenced in a patient’s

notes before the disease takes a turn for the worst. If so, then this would constitute another

potential benefit of utilizing unstructured text data. Furthermore, dementia and Alzheimer’s

disease are not particularly well-understood, and it is possible that the broad and unbounded

nature of clinical text may allow for the discovery of new meaningful warning signs.

2.2 Classification

In supervised machine learning, a classification task uses a set of data instances, each with a

corresponding label from a pre-determined set of classes, to learn a model that can accurately

predict those labels. Each instance is represented as a vector of values obtained from feature

functions. Features are usually defined based on knowledge of the problem at hand to

appropriately represent each data instance. These vectors serve as inputs for classification.

6



www.manaraa.com

Formally, we have a collection

{(xi, yi) | xi ∈ Rp , yi ∈ C}ni=1

where each data instance xi is a p-dimensional feature vector and yi is its associated class

label. A classification algorithm is trained on a subset of this data to find boundaries that

divide the data instances by class label. The trained model can then be used to predict the

labels of another subset of the data instances, and evaluated based on how well it does so.

Examples of classification algorithms include the Support Vector Machine (SVM), deci-

sion tree, and k-nearest-neighbors. Some algorithms produce a probability distribution over

the set of class labels, called a posterior distribution (as opposed to the prior distribution

of the class labels before any modeling) and output the label with the highest probability.

This is the case for logistic regression, which is the algorithm of choice for this thesis, for

reasons explained in Chapter 6.

2.2.1 Text Modeling

Of particular interest to this thesis is the incorporation and integration of unstructured text

data for classification purposes. In the field of natural language processing, a collection of

text documents is referred to as a corpus (plural corpora). Transforming a corpus into a

set of feature vectors for classification often involves representing each document in terms of

the words they contain. It is common for these representations to make use of the bag-of-

words assumption, which treats documents as collections of the unique word types contained

within, irrespective of word-order. Weighting schemes such as tf-idf (term frequency - inverse

document frequency) then extend this representation based on corpus-wide calculations. In

any case, these representations are sparse, as documents will only contain a small subset

of corpus-wide vocabulary. This thesis further makes use of the topic modeling algorithm

Latent Dirichlet Allocation (LDA) to address this sparsity, both to explore performance in

classification and to provide a more interpretable representation of the documents.

7
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2.2.2 Topic Modeling

Topic modeling algorithms aim to discover groups of related words in a collection of doc-

uments. The idea behind topic modeling is rather intuitive: the probability of a word

occurring may be higher or lower depending on what is being discussed or written about.

For example, a topic about dermatology may be more likely to contain the words macule

or melanoma than a topic about dentistry, which may be more likely to contain the words

enamel or gingivitis. However, some words may have roughly the same probability of oc-

currence regardless of the topic. This includes not only function words, such as the or and,

which will occur in nearly every English text, but also words that are shared between a set

of topics, such as treatment or visit in the previous example. A document may have multiple

prominent topics that are active at different times, and the probability of each word changes

accordingly.

More formally, topic modeling is about discovering the hidden thematic structure of doc-

uments by working backwards from statistical observations of the words within a corpus.

The algorithm employed in this thesis is Latent Dirichlet Allocation (LDA), described in

detail in Section 6.1.4. In LDA, each topic is a probability distribution over a set of words

(a vocabulary), and each document is a distribution over a set of topics. Topics are de-

rived through statistical inference over the corpus of documents and reflect the language

usage patterns found within. This contributes to facilitating the interpretability of topics,

however, it does not necessarily mean that every single topic in its raw form (word dis-

tribution) will be as easily understandable as the examples above. Improving the human

interpretability of topics can be accomplished through empirical selection of the number of

topics to avoid extraneous granularity, as well as through text normalization techniques that

reduce irrelevant noise in the corpus. However, the presence of some nonsensical topics is

an expected and established outcome of LDA. For example, high-frequency general words

may end up aggregating into non-specific meaningless topics, but this is actually beneficial

8
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for the model as a whole because it allows the more interesting content words to form their

own topics [Boyd-Graber et al., 2014]. Various quality metrics for individual topics have

been defined in the literature, a few of which are selected for implementation in Section 6.3.

It is also important to note that a lack of immediate intuition about a topic in a specific

domain like medicine does not necessarily mean that it is faulty; it is entirely possible for

new term relationships to be identified, but this type of outcome must be carefully evaluated.

Importantly, LDA constitutes a form of dimensionality reduction for the sparse bag-of-words

representation. The reduced topic representation of documents will be small and dense, as

well as easy to visualize and inspect, making it potentially more interpretable to humans

than other forms of dimensionality reduction.

9
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3 Related Work

The potential of data mining in the medical domain has been recognized for some time.

Utilizing structured clinical data, such as patient demographics and test results, is intuitive

and may be useful for predicting certain disease cases based on known markers [Himes et al.,

2009]. Most prominently, medical records often make use of standardized coding schemes,

such as the International Classification of Diseases version 9 (ICD-9) codes, which can provide

high specificity for a given disease, but may not provide sufficient sensitivity [Birman-Deych

et al., 2005, Kern et al., 2006]. That is to say, the presence of a certain disease or symptom

code may strongly indicate the presence of a particular condition, but the absence of that

code may not necessarily indicate the absence of that condition. In such cases, a prediction

based on merely that code could fail to identify many afflicted or at-risk patients. A patient’s

history often plays a critical role in diagnosis, but ICD codes are typically assigned upon

admission or discharge, and thus may not be present for past conditions. However, historical

information is typically summarized by a clinician in text form, especially when the patient

has no existing electronic clinical health record. This natural language data provides a level

of expressiveness and granularity not feasibly represented by ICD-9 codes [Li et al., 2008].

Natural language processing (NLP) and text mining techniques have been applied to

texts from electronic clinical records in the past, with a focus on extraction of known dis-

ease markers obtained from medical knowledge sources. One such method is to identify

relevant terms using an ontology (curated knowledge base), such as SNOMED-CT (System-

atized Nomenclature of Medicine - Clinical Terms), which maps terms to their corresponding

10
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medical concepts. This method was employed by Murff et al. [2011] for predicting post-

operative complications for patients who recently underwent medical procedures, finding

that it outperformed the health records’ default Patient Safety Indicators system (tagging

based on standardized ICD-9 diagnostic codes), in terms of both sensitivity and specificity

performance metrics. Another common practice is to use a program like MedLEE (Medical

Language Extraction and Encoding system) [Friedman et al., 1995] to automatically extract

and codify medical terms and concepts in a text, then process that information as needed.

MedLEE has provided impressive results for identifying cases of colorectal cancer [Xu et al.,

2011], suspicious mammogram findings [Jain and Friedman, 1997], and adverse events re-

lated to central venous catheters [Penz et al., 2007]. SymText [Haug et al., 1995] is another

example of a medical language extraction tool that has been used for similar purposes, such

as detecting bacterial pneumonia cases from chest X-ray descriptions, achieving performance

comparable to physician-evaluated gold standards [Fiszman et al., 2000].

In general, systems that utilize medical knowledge bases like these seem to be useful

towards disease case identification. However, it is important to note that these studies

mostly dealt with short-term and/or inspection-based medical events that are relatively

easy for a human clinician to detect based on a single text report. Additionally, software

like MedLEE and SymText rely on known word and clinical concept relations, which may be

partly responsible for their high performance on more well-understood medical conditions,

such as the ones above. A problem is that many diseases and conditions of interest, such as

dementia (the focus of this thesis) and other cognitive or mental illnesses, are not necessarily

as well-understood and thus may not be as adequately predicted by existing knowledge bases.

Discovery of new terms associated with these afflictions could be more beneficial than simply

attempting to predict them using the limited knowledge already available.

Text mining algorithms such as Latent Semantic Indexing (LSI) aim to discover statistical

relationships between words in a corpus which can then further be related to disease states

for a particular patient’s clinical texts. Luther et al. [2011] used LSI to supplement the

11
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development of a clinical vocabulary of terms associated with post-traumatic stress disorder,

which was able to identify more unique terms than a model based on the SNOMED-CT

vocabulary. To further specialize their results, the authors devised different term categories,

including symptoms, medications, and traumas - resembling common divisions of text notes

in many medical record systems. LSI can also be used for classification, as was done by

McCart et al. [2013] to predict ambulatory falls in elderly patients.

Although LSI provides the benefit of identifying novel important terms in text corpora,

it often requires around 300–500 dimensions to produce stable results [Bradford, 2008]. This

is a considerable improvement over the dimensionality of the bag-of-words representation for

classification purposes, but could potentially be improved further by using topic modeling

algorithms, namely Latent Dirichlet Allocation (LDA). As discussed in previous chapters,

the goal of topic modeling is to identify groups of related terms that also may be more intu-

itive for human interpretation than the latent dimensions produced from LSI. Additionally,

representing each document by its topic distribution, as is typically done in the literature,

will reduce the classification feature space to even fewer dimensions (i.e. if there are k topics,

then each document has k features). In general, topic modeling has produced interesting

results in medical and non-medical domains. Chan et al. [2013] used LDA on health record

texts to find topics relating to genetic mutations. Resnik et al. [2013] used LDA to im-

prove performance over other semantic category features when predicting neuroticism and

depression in college students’ self-reflective essays. More commonly, LDA is employed in

modeling of social media data [McCallum et al., 2007, Paul and Dredze, 2011]. One relevant

study by Hong and Davison [2010] using Twitter data demonstrated that document length

can influence topic models, and that aggregating short documents on a per-author basis can

result in improvement. This finding is useful for the present work due to the prevalence of

similarly short text documents in the clinical dataset.

A theme in this thesis is interpretability, and the nature of these different feature types in

this context is of interest for analysis. As will be described in later sections, the unstructured
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and structured data are treated here as separate sources of information, and models based

on each can be integrated1 as distinct units. Ruta and Gabrys [2000] provides an overview

of various techniques, some of which are more applicable here than others. For example,

voting is the typical method of classifier integration, in which a final decision is determined

by a majority or weighted tally of the outputs from a population of trained classifiers. This

is common in ensemble methods such as random forests, but is not the best choice here,

since one classifier each is considered for structured and unstructured data, making this

kind of voting problematic. When using classifiers that rank class outputs by likelihood

(i.e. they produce some kind of posterior probability distribution), the more interesting

Borda Count voting method could be used. In this method, a class is re-ranked based

on how many classes rank below it in each classifier. This is also not suitable for a two-

classifier system because it would be easy for two classes to receive the same Borda Count

(e.g. with A > B > C and B > A > C, both A and B would have an equal Borda

Count of 3). More importantly, the two classifiers utilize two different inputs (structured

and unstructured data features), as opposed to multiple classifiers trained on the same

inputs. The most appropriate solution under these circumstances is to leverage Bayesian

probability and work with classifiers that produce posterior distributions [Bailer-Jones and

Smith, 2011]. Assuming conditional independence of the two input types with respect to a

given class allows for the probabilities to be combined, the exact equations for which are

given in Section 6.1.6. This approach is less common in the literature because of uniqueness

of this application; typical problems will use more traditional ensemble techniques like the

ones mentioned above.

1Here, integration refers to techniques for utilizing both unstructured text data and structured data
simultaneously for the purpose of supervised machine learning. It is unrelated to integration in the sense of
creating databases or tools for storing or querying these data types together. The term fusion is sometimes
used in the literature [Ruta and Gabrys, 2000].
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4 Dataset

This chapter describes, characterizes, and explores the dataset utilized for this thesis, and

details how it was used to create a text corpus. The dataset was chosen because it is openly

available and approved for research purposes, and relates to the condition of interest.

4.1 Alzheimer’s Disease Neuroimaging Initiative

The dataset used here was obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) (adni.loni.usc.edu). The methods employed here constitute a secondary use of

the data for a purpose that is in line with the general goal of identifying dementia markers.

The following two paragraphs are included verbatim, as required by the ADNI Data Use

Agreement.

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Admin-

istration (FDA), private pharmaceutical companies and non-profit organizations, as a $60

million, 5-year public-private partnership. The primary goal of ADNI has been to test whether

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other bio-

logical markers, and clinical and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

Determination of sensitive and specific markers of very early AD progression is intended to

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as

well as lessen the time and cost of clinical trials.
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The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical

Center and University of California San Francisco. ADNI is the result of efforts of many

co-investigators from a broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial

goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to

participate in the research, consisting of cognitively normal older individuals, people with

early or late MCI, and people with early AD. The follow up duration of each group is specified

in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-

1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see

www. adni-info. org .

4.2 Characteristics of the ADNI Dataset

Most of the data fields present in the ADNI study contain structured data, such as mea-

surements from brain imaging scans, and blood and cerebrospinal fluid biomarkers. These

data are spread across many files, each containing related information for all subjects, with

each line corresponding to one medical visit. Some files contain optional text fields in which

the physicians or examiners could include notes or descriptions at their discretion. Section

4.3 describes how such text fields were used to construct the primary corpus used in this

thesis. Each of the 1,783 subjects is assigned a diagnostic label upon entering the study. The

original labeling scheme was modified in later phases of the study (ADNI-GO and ADNI-2),

resulting in a total of six possible labels for each subject: Cognitively Normal (NL), Sig-

nificant Memory Complaint (SMC), Early Mild Cognitive Impairment (EMCI), MCI, Late

MCI (LMCI), and Alzheimer’s Disease (AD). The SMC group is distinguished from MCI by

self-reporting of their memory issues, as opposed to typical MCI sufferers whose problems

are brought to attention by others. The original ADNI-1 study had only one MCI category,
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with later phases introducing Early and Late MCI to increase the diagnostic granularity.

However, some subjects from the original study did not return for the later ones and thus

retained their original MCI label. Because of these changes to the label assignment proce-

dure, the work presented in this thesis made use of a subset of the available ADNI subjects,

which is explained in Section 4.2.1. A subject may also convert to another diagnostic label

if their symptoms change during the course of the study. Of the nearly 1800 total subjects,

only 19 converted, two of which appear to be corrections of the original diagnosis, i.e. the

subject reverts back to a lower-level disease state, rather than progressing to a later one.

These converted subjects have been studied in the past [Barnes et al., 2014], but are not

examined in this thesis, given their rarity.

4.2.1 Inclusion and Exclusion of Subjects

As mentioned in the previous section, the diagnostic assignment procedures changed between

phases of the ADNI collection, resulting in some subject having their labels updated to reflect

the new rules, but other patients retaining the labels from the original study (as they did

not return for the later ones). To deal with this, only subjects who joined the study under

the most recent phase, ADNI-2, are included in this work. Of these, any subject with a

label of SMC (Significant Memory Complaint) is excluded because of the ambiguity of the

label (SMC is not a real diagnostic category outside of this study). Finally, a subject must

have both unstructured text data and structured data in their record to be included. This

restriction is necessary for the model integration experiments later on. This leaves 679 usable

subjects. From this point on, this thesis will refer only to these subjects and their data.

4.2.2 Class Labels

The ADNI-2 phase of the ADNI collection study used five labels to indicate the progression to

Alzheimer’s Disease: NL (Normal), EMCI (Early Mild Cognitive Impairment), LMCI (Late

MCI), and AD (Alzheimer’s Disease). Subjects labeled with SMC are excluded because it
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is not a real diagnosis, but rather a special label used within the context of the ADNI study.

The label (class) distribution of the remaining 679 subjects is shown in Figure 4.1. The

distribution is relatively balanced between all classes.

Normal (NL)

28%

Alzheimer’s Disease (AD)

22%

Late MCI (LMCI )

24%

Early MCI (EMCI )

26%

Figure 4.1: Distribution of diagnostic labels for the subjects used in this thesis (n = 679).
MCI = Mild Cognitive Impairment.

4.3 Construction of a Text Corpus

As mentioned earlier, the ADNI dataset consists of many data files, most of which contain

almost exclusively structured data. However, some files have an optional text field where

physicians could add notes or descriptions at their discretion. Four files in particular were

identified which contained considerable quantities of text data, as shown in Table 4.1. There

is a different number of subjects present in each file because some subjects may not have

text in all four files/categories for each visit. No single file contains entries for all subjects,

and a subject without any text notes is excluded. However, all of the 679 subjects meeting

the criteria established earlier in Section 4.2.1 possess text notes in at least one of these four

files, and are thus usable for this thesis.

Each of the four files described above could be treated in isolation, considering all entries

for each subject to be one document for that subject, as was shown in the previous section.

Instead, entries from all of these files are aggregated by subject and concatenated to yield

one text document per subject. Representing each subject as a single document is intuitive

for a text mining study. This only requires a subject to have notes in at least one of the

files, which was part of the inclusion criteria in the first place.
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Total # # usable # unique
File Content description entries entries subjects

RECMHIST Recent medical history 30,727 7,153 678
RECADV Recent adverse events/hospitalizations 16,063 1,375 384
RECBLLOG Symptoms at initial/baseline visit 12,768 2,156 585
BLCHANGE Changes since initial/baseline visit 8,571 1,955 635

Table 4.1: Files chosen for corpus construction based on available text data. An entry refers
to one medical visit. One subject may have multiple visits/entries. Total # entries refers to
all entries, regardless of their inclusion in the corpus being constructed here. The last two
columns identify the usable entries and subjects described in Section 4.2.1.

4.3.1 Exploration of Corpus Vocabulary

This section details exploration of the vocabulary content of the text corpus. Although text

is considered unstructured, it could be argued that the categories of the files listed in the

previous section (recent medical history, recent adverse events/hospitalizations, symptoms at

initial/baseline visit, and changes since initial/baseline visit) enforce some form of structure

by restricting the content. These data are still free in comparison to typical structured data,

however. It is interesting to characterize and compare the four files in terms of their linguistic

content.

One interesting way to view lexical differences in the files is through word clouds. A word

cloud is a visualization in which the most common words in a corpus or text are arranged

in a block with a font size corresponding to their relative frequency. Figure 4.2 shows word

clouds of the most frequent 200 lexical word types in each of the four files (generated using the

freely available wordcloud Python library, obtained from https://github.com/amueller/

word_cloud). Note that for this analysis, the words were subjected to the preprocessing and

normalization steps explained later in this thesis, in Section 6.1.1.

This high-level view of the lexical content of each text source shows obvious differences.

Some of the large words in the recent medical history (Figure 4.2a) relate to visual/ocular

(eye, cataract) and blood pressure (hypertension) problems, as well as surgery in general

(surgery, repair, removed). This is not surprising given the older age range of the ADNI
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(a) Recent medical history (b) Recent adverse events / hospitalizations

(c) Recent symptoms at initial/baseline visit (d) Changes since initial/baseline visit

Figure 4.2: Word clouds of up to the top 200 word types (i.e. distinct lexical words) for
each of the four ADNI files used. The size of a word corresponds to its frequency, where
the biggest word is the most frequent in the documents of a given file. Color is only for
visibility. Word clouds were generated using the freely available wordcloud Python library
(https://github.com/amueller/word_cloud).

subjects. For recent adverse events and hospitalizations (Figure 4.2b), there appears to be

a focus on the subject, patient, or participant (effectively synonyms here). Phrases such as

subject reports are common in these documents. The word cloud for recent symptoms at the

baseline visit (Figure 4.2c) is also not surprising, with pain appearing much larger than any

other word in any of the four word clouds, followed by typical afflictions of the elderly, such as

urinary frequency and low energy (see Section 6.1.1 for an explanation of why these contain

underscores). Finally, the log of changes since the baseline visit (Figure 4.2d contains many

instances of the word memory (as indicated by its large size), as well as similarly increased

relative frequencies of subject or patient references when compared to the recent adverse

events. It is important to notice that there are differences between the lexical content of
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each of these text sources, showing the diversity of medical details contained within them.

(This linguistic diversity would likely be more evident in regular electronic health records,

as compared to this dataset, and would therefore likely make an even better basis for the

work being presented here.)

(a) Recent medical history (b) Recent adverse events/hospitalizations

(c) Recent symptoms at initial/baseline visit (d) Changes since initial/baseline visit

Figure 4.3: Word clouds of top 200 word types (i.e. distinct lexical words) for each of the four
ADNI files used, this time showing only the words which are unique to a given file (i.e. words
that do not appear in any of the other three). The size of a word corresponds to its frequency,
where the biggest word is the most frequent in the documents of a given file, excluding the
words types found in other files. Color is only for visibility. Word clouds were generated
using the wordcloud Python library (https://github.com/amueller/word_cloud).
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Although there are some differences between the four text file sources, there were also

some similarities in relative frequencies of words within each. It would be potential useful to

look at the words that differ between them in a similar way. Figure 4.3 shows the same kind

of word clouds as before, but this time only words unique to a given file’s documents are

included. For example, the word subject appears in all four files, and therefore is excluded

from any word cloud, whereas the word cdr (Clinical Dementia Rating, a cognitive test)

appears only in BLCHANGE and is thus included in the BLCHANGE word cloud. This

version of the word clouds allows us to see the relative frequency of words that may be

confined to a particular text file and reveals an advantage of each. That is to say, each file

captures something slightly different, and thus using all of them grants us a bigger picture

of subjects’ health conditions.

A limitation of this word cloud analysis is that it only shows the relative frequencies in

the documents of each file. This is acceptable in Figure 4.2 because the number of word

tokens is high, but in Figure 4.3, the frequency of the unique words in each file may be quite

low, possibly only a single occurrence. Yet, visualization is rather meant to be a creative way

to explore and understand the data on a high level as a complement to other experimentation

and development.

4.4 Source and Preparation of Structured Data

The collection of structured data used for comparison and integration in this thesis was

prepared in the past by a colleague, Rohan Murde, active in the same research group as the

thesis author as part of a collaborative effort towards a larger project. These methods are

summarized in Bullard et al. [2015], although the set of subjects considered in that paper

differs slightly from the set used here. The relevant preparation and modeling procedures for

the structured data are explained in this section, rather than in the Methods chapter, which

deals with those of the unstructured data and other work done solely by the thesis author.
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There are a total of 22 structured data fields originally obtained from a subset of the

ADNI database files, which are shown in Table 4.2. Nineteen of these fields are measurements

obtained from either cerebrospinal fluid samples or brain imaging scans. The remaining three

are scores from cognitive exams: the Clinical Dementia Rating (CDR), the Mini Mental

State Exam (MMSE), and the Alzheimer’s Disease Assessment Scale (ADAS13). These

three features will be distinguished later in Chapter 6. The early work published in Bullard

et al. [2015] made use of a different subset of the ADNI subjects, and the structured data here

was matched to the new subject set used in this study. The previously mentioned problem of

missing values in the structured data was handled through multiple imputation, a statistical

process that uses log-likelihoods to generates probable complete datasets, averaging the

values to get an estimate for the missing values. This had been accomplished using the

Amelia II package in the R programming language. The outcome is that each subject has

one value for each of the 22 structured data fields.

File Content description

baimrinmrc Brain volume atrophy
cdr Clinical Dementia Rating (CDR) scores
upennbiomk5 Cerebrospinal fluid (CSF) biomarkers
upennbiomk6 Cerebrospinal fluid (CSF) biomarkers
upennplasma Plasma biomarkers
ucberkeleyav45 PET scan with florbetapir

Table 4.2: ADNI files from which the structured data collection was obtained.
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5 Problems, Goals, and Hypotheses

The previous chapters have introduced and motivated this thesis by briefly presenting its

practical applications and technical contributions. These, along with the description of

the dataset and corpus construction, provide the context necessary to formally outline the

problems addressed by this thesis and to hypothesize the experimental outcomes. Detailed

descriptions of the experimental methods are given later in Chapter 6. In this work, each

subject from the ADNI dataset is considered an instance for the supervised machine learning

task of correctly classifying the diagnostic label assigned to that subject in the ADNI study.

Features of patients’ structured and unstructured data are represented separately and treated

as distinct sources of information. There are three primary goals as outlined below.

5.1 Incorporation of Unstructured Text Data

The first goal is to compare the performance of predictive modeling based on structured and

unstructured data features separately. Processing of structured data from the ADNI have

been performed in the past by a colleague, Rohan Murde, in this thesis author’s research

group, and is contrasted against models of the subjects’ corresponding unstructured data.

The hypothesis is that the unstructured data features alone will yield performance compara-

ble to that of the structured data, especially when excluding the cognitive assessment scores.

This result would show the practical utility of natural language data for disease prediction

when relevant structured data are unavailable, as is often the case for conditions like demen-

tia. Success of this goal is determined by classification performance metrics, explained in

detail in Chapter 6.
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5.2 Topic Modeling for Dimensionality Reduction

As part of the second goal, the topic modeling algorithm Latent Dirichlet Allocation (LDA)

is explored as a form of textually interpretable dimensionality reduction for the bag-of-

words feature space. The hypothesis is that LDA will improve classification performance

with the unstructured data by reducing the sparse feature space to a dense representation,

and furthermore, that this reduced topic space will provide a meaningful and interpretable

characterization of subjects’ text documents. The latter result is desirable for this human-

centered medical application, where intuitive interpretation is favorable. The success of this

goal is evaluated through computational metrics described in Chapter 6.

5.3 Integration of Structured and Unstructured Data

Finally, features and classification models based on structured and unstructured data are

integrated for additional classification experiments. The hypothesis is that combining the

power of these two feature types will improve performance over either in isolation. This is

evaluated in the same ways as the previous classification tasks. This result would further

strengthen the previously hypothesized utility of unstructured data features for disease pre-

diction by showing that they not only provide benefit on their own, but also complement

established work with structured data.
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6 Methods

This chapter begins by explaining the modeling (Section 6.1) of unstructured text data, as

well as the techniques for integration with the structured modeling, all of which produce

features to be used in classification of the subjects’ diagnostic class label. The classification

experiments and evaluation procedures are then described in Section 6.2, followed by a

section (6.3) describing the evaluation of LDA topics.

6.1 Data Modeling

There are three main feature representations for the unstructured data: bag-of-words, tf-idf,

and topic modeling with Latent Dirichlet Allocation (LDA). A prerequisite to this modeling

is text normalization, which is described first, below, followed by subsections dedicated to

establishing the nuances and implementation decisions of each of the text modeling repre-

sentations. The source and preparation of the structured data were already covered earlier

in Section 4.4, but the experimental choices regarding its incorporation are described here.

Finally, the integration techniques are also defined. Each of these modeling stages is meant

to introduce new functionality and provide benchmarks of performance improvement in sub-

sequent stages. The entire modeling process is visualized in Figure 6.1 below. As already

stated, all processing, modeling, and experimental design using unstructured data, and the

integration of structured and unstructured models, constitute the independent work of the

author of this thesis. Modeling of the structured data was performed in the past by a col-

league, Rohan Murde, within the same research group as the author of this thesis, the final

results of which are used here for the integration experiments.
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Test1 Test2 Test3

3.14 17.2 x

x x 5

x 7.0 12

Structured
Data

Missing Value
Prediction

All Structured
Features

Cognitive
Features
Excluded

Classification
(Structured)

Unstructured
Text Data

Text
Normalization

Bag-of-words
Tf-idf

Weighting

Topic
Modeling
with LDA

Classification
(Unstructured)

Classification
(Integrated)

Figure 6.1: Box diagram illustrating the stages of modeling implementation. Arrows indi-
cate where the output of one stage feeds into the next. The items along the bottom path
(Structured Data → Missing Value Prediction → Classification (Structured)) are the work of
a colleague, Rohan Murde, in the same research group, but all work pertaining to unstruc-
tured data and model integration constitute independent work for this thesis (see Section
6.1.6)

6.1.1 Text Preprocessing and Text Normalization

The first input in this model is text (i.e. natural language) data from electronic medical

records. Natural language introduces a number of irregularities, ambiguities, or otherwise

non-standard words that are accounted for before proceeding with further computational

modeling [Sproat et al., 2001]. A central idea of text normalization is to identify and convert

multiple forms of the same thing and into one common form for more complete and effective

processing. For example, one calendar date can be written in many different formats, but

statistical and linguistic models may not be able to reconcile them adequately. Converting
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all dates into one format would allow the same date to be recognized in all contexts in

which it appears. Text normalization is important in medicine due to the high frequency

of domain-specific lexicon and shorthand (i.e. jargon). This section outlines the various

stages of pre-processing and normalization implemented in this thesis. A full example of

these procedures is given in Figure 6.2 on page 32. All preprocessing and text normalization

procedures are performed in Python, with help from the Natural Language Toolkit (NLTK).

Preprocessing

Preprocessing differs from text normalization in that it is not concerned with unifying various

forms of semantically identical linguistic units, but rather it deals mostly with converting

text data into a usable format for normalization (hence preprocessing). Standard preprocess-

ing techniques implemented here include lowercasing, punctuation removal, and stop-listing

(removal of common function words, pronouns, prepositions, e.g. the, I, around). The stop-

list used consists of the English stop-words from the Natural Language Toolkit (NLTK) in

Python. In addition to typical stop-listing, words or phrases revealing a subject’s diagnostic

state (e.g. MCI ), as discovered during data exploration, are removed from all documents.

This is done because the goal of this work is to identify features of and predict dementia

based on information in a medical record before the diagnosis. Finally, words in a document

are lemmatized using the Natural Language Toolkit (NLTK) WordNet lemmatizer to reduce

inflections of the same word into one word token (e.g. cataracts and cataract). This helps

reduce sparsity without altering the meaning of the text. The medical domain uses may

abbreviations, some of which end with the letter s, confusing the lemmatizer. Unit testing

of lemmatization produced a list of all altered words, which was inspected to identify errors.

Any token in this list is ignored during lemmatization. The result of preprocessing can be

seen in the full example in Figure 6.2 on page 32, along with the rest of the text normalization

procedures explained below.
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Date and Age Expressions

References to specific dates or ages are also quite common in medical texts, and can be

represented in many different ways. Such expressions are converted into uniform represen-

tations that can be easily identified and extracted. For date expression, the tag format is

DATE yyyy mm dd, where yyyy is a four-digit year, mm is two-digit month with leading

zeros, and dd is a two digit day with leading zero. For age expressions (e.g. 72 y/o), the tag

format is AGE yyy mm, where yyy is the number of years as three digits with leading zeros,

and mm is the number of months as two digits with leading zeros. Age expressions with a

number of months exceeding 12 are carried over into the years, and any unit of time smaller

than a month (e.g. days, weeks, etc.) is ignored. Table 6.1 shows a full list of all date and

age formats which are handled, with examples and explanations.

Date Age

2/3/2013 → DATE 2013 02 03 75 y/o → AGE 075 00
12/31/78 → DATE 1978 12 31 75 yo → AGE 075 00
feb/03/13 → DATE 2013 02 13 1 year 1-month old → AGE 001 01
03/february/13 → DATE 2013 02 13 10-1/2 year-old → AGE 010 06
- -/03/2013 → DATE 2013 00 31 16 half year-old → AGE 016 06
02/- -/2013 → DATE 2013 02 00 5 month 3 day old → AGE 000 05
- -/- -/2013 → DATE 2013 00 00
- -/- -/- - - - → DATE 0000 00 00
7/1991 → DATE 1991 07 00
january 2 2001 → DATE 2001 01 02
2 january 2001 → DATE 2001 01 02
january 2 → DATE 0000 01 02
january 2001 → DATE 2001 01 00

Table 6.1: Examples of date and age expression tagging.

A problem with date expression is that they represent the continuous spectrum of time,

and therefore it is entirely possible that none of them exist more than once in a given corpus.

For this reason, they are simply removed here after tagging. The described tagging procedure

could be useful in future work involving temporal modeling. Age expressions have a similar
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issue, but rather than removing them completely, they are binned into decades starting at

40 and going up to 90. The resulting tag has the format AGE >=mm <MM, where mm

and MM are the lower and upper bounds of the bin, respectively (e.g. AGE >=70 <80 ).

Ages below 40 are represented as AGE <40 and ages at or above 90 are represented as

AGE >=90. This grouping allows for certain ranges of ages to show up in the modeling,

which may be important in the context of dementia.

Numbers and Numerals

Numbers and numeral representations can create difficulty in NLP and text mining because

there are potentially infinite possibilities, or at the very least an infeasibly large, set of

possibilities, depending on the context, but the numerical value itself may not actually be of

much importance. Initially, any Roman numerals (e.g. II ) and spelled numbers (e.g. twenty)

were all converted to Arabic (e.g. II → 2, twenty-two → 22 ). However, it was decided in

later experimentation that any number outside of temporal date or age expressions should

be removed from the text, as the actual numerical value is of little importance to the type

of modeling being done.

Abbreviations and Acronyms

Language used in specialized domains like medicine often contains abbreviations for single

words (e.g. patient → pt) or acronyms for phrases and multi-word expressions (e.g. status

post → sp). In the former case, a find-and-replace method is used, based on a word-list

of common medical abbreviations. The latter case of multi-word expressions (MWEs) can

present more difficulty, which is dealt with later in Section 6.1.1. For this normalization

step, common medical acronyms are expanded into their constituent words (e.g. bph →

benign prostate hyperplasia). The list of abbreviations was mostly built during the data

exploration phase, and is based on this dataset. More examples are shown in Table 6.2.
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Abbreviations Acronyms

dx → diagnosis ad → alzheimers disease
ha → headache bp → blood pressure
htn → hypertension bph → benign prostate hyperplasia
pt → patient cdr → clinical dementia rating
r/x → prescription dm → diabetes mellitus
w/ → with lp → lumbar puncture

Table 6.2: Examples of expansion of abbreviations and acronyms. Full word-lists are avail-
able in the CD archive submitted with this document.

Multi-word Expressions

Multi-word expressions (MWEs) are sequences of words whose meaning as a whole is not

simply the semantic composite of each individual word (e.g. hot dog is a semantic multi-word

unit that is not simply a combination of hot and dog). In such cases, it is more reasonable to

treat the fully-expanded sequence of words as one unit to preserve its meaning, which may

be distorted by unigram-based linguistic models, such as bag-of-words and LDA, that do not

account for word order. In the domain of medicine, there are many expressions that do not

strictly meet the criteria for MWEs, but whose meaning may still be lost in such models.

For example, clinical dementia rating is essentially a rating of dementia used in a clinical

setting, but the order of the words is still very important; a medical record containing these

three words in different positions would not be distinguished from one containing them in

sequence. It is beneficial to relax the definition of MWE to include such cases. This is

done by concatenating constituent word with underscores ( ), so that it will be treated as

one unit during modeling (e.g. breast cancer → breast cancer). This is common practice in

pre-processing for Latent Dirichlet Allocation (LDA) [Boyd-Graber et al., 2014, p. 9–10].

Many such MWEs can be identified during data exploration, but a more thorough list

is generated through analysis of n-grams (word sequences of length n) in the corpus. The

200 most frequent bigrams and trigrams (sequences of 2 and 3 words, respectively) are

extracted into a word-list, which is manually inspected for validity. This is done after all
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previously described text normalization procedures, thus these are lexical content n-grams.

This method appears to do well at finding common MWEs, but also produces a number of

false positives for coincidentally common n-grams. For example, insomnia depressed mood

is a common content trigram in this dataset, presumably because those symptoms are often

listed together in patient symptoms or history, but the three words together do not constitute

one semantic concept. Thus this trigram is removed from the list during inspection is not

concatenated for modeling. In the case that a bigram is a subsequence of another trigram

(e.g. restless leg and leg syndrome are actually part of restless leg syndrome), the bigrams

are removed so that the trigram can be properly recognized. Finally, there are some cases in

which an MWE may be synonymously represented by only a subset of its constituent words

(another form of abbreviation), such as referring to diabetes mellitus as simply diabetes. For

these kinds of MWEs, the words are not concatenated, as doing so would actually separate

the two expressions, while leaving them as individual words would allow the meaning to be

identified by the important word in both cases. The final list contains 112 expressions, a

subset of which are shown in Table 6.3.

Multi-word Expressions from n-grams

Concatenated Ignored

blurred vision cdr scores ∗
breast cancer diabetes mellitus ∗
chest pain history depression ∗
clinical dementia rating activities daily living ×
cognitive decline hypertension hyperlipidemia ×
daily living insomnia depressed mood ×
high blood pressure male no ×
kidney stone bowel syndrome ◦
memory problems high blood ◦
short term memory leg syndrome ◦

Table 6.3: Examples of multi-word expressions (MWEs) in the corpus extracted from n-gram
analysis (see Section 6.1.1). An identified n-gram is concatenated with underscores ( ) unless
it is synonymously expressed by one of its constituent words alone (indicated by ∗), it is a
sub-sequence of a true MWE (indicated by ◦), or it is not truly an MWE (indicated by ×).
Full word-lists are available in the data archive submitted with this document.
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Full Process

Figure 6.2 shows a full example of all preprocessing and normalization procedures to one

subject’s text. The procedures explained and performed above appear to cover most of

the potential issues in this dataset, and were unit-tested and inspected during implemen-

tation. However, text normalization is tricky, and it is expected that that some linguistic

inconsistencies remain in the texts after normalization.

Mild depressive symptoms. Treated with SSRI sertraline Hypertension Hypercholes-
terolemia History of constipation Participant accidently fell on kitchen floor on 9/15/12.
No injuries reported. Husband had scrubbed the floor so the floor was wet when SMT
entered the room. 71 year old woman first evaluated for memory complaints in April
2008, noted to have mild deficits at that time. Has had progression gradually over time
with increasing impairment in memory and executive function with no commensurate
changes in general health. She presently has a clinical diagnosis of mild dementia, proba-
ble Alzheimer’s type. 72 year old in excellent general health with notable memory changes
over the last two years or so. Memory function and CDR consistent with AD. Participant
has had no change in medical condition, no evidence for delirium, but she has had a subjs-
tantial decline in memory and functional status over the last six months such that she has
likely crossed the threshold to moderate dementia. She is displaying decline in cognition
and functional skills that is consistent with AD and not attributable to other factors.

⇓
mild depressive symptom treated ssri sertraline hypertension hypercholesterolemia history
constipation participant accidently fell kitchen floor no injury reported husband scrubbed
floor floor wet smt entered room AGE >=70 <80 woman first evaluated memory com-
plaint noted mild deficit time progression gradually time increasing impairment memory
executive function no commensurate change general health presently clinical diagnosis mild
probable type AGE >=70 <80 excellent general health notable memory change last year
memory function cdr consistent participant medical condition no evidence delirium sub-
jstantial memory problems functional status last month likely crossed threshold moderate
displaying decline cognition functional skill consistent attributable other factor

Figure 6.2: Full example of preprocessing and text normalization procedures. Note that this
document is shown verbatim, including typographical errors in the dataset. Each document
here is the concatenation of all text entries for one subject.
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6.1.2 Bag-of-Words

In a bag-of-words model, a dictionary is created by assigning an index to every distinct

term in a corpus. Each document is then represented as a list of these indexes, along

with their frequency in the document. Figure 6.3 shows a toy example using a corpus of

two documents to clearly illustrate this concept. The dictionary constructed on a corpus

can also be used to represent documents outside of the corpus. It is possible that a new

document may contain an out-of-vocabulary term (i.e. one that did not appear in the corpus

used to construct the dictionary). One way to handle this is by ignoring such terms, as is

seen in the example in Figure 6.3. Ideally, the size and vocabulary of a training corpus would

capture enough that this method would not present a problem, as is expected with a large

and broad medical dataset. This limitation is acceptable, considering that bag-of-words is

overall a simple model, not taking into account relationships between words. Bag-of-words

models are implemented using the gensim Python library [Řeh̊uřek and Sojka, 2010].

Dictionary

0 : complain
1 : headache
2 : history
3 : improve
4 : recent
5 : status
6 : subject



Doc 1 history headache subject complain recent headache
[(2,1),(1,2),(6,1),(0,1),(4,1)]

Doc 2 subject status improve
[(6,1),(5,1),(3,1)]

Doc 3 history hypertension
[(2,1)]

Figure 6.3: Example of a bag-of-words model on two documents. This is meant to illustrate
the concept, which is done more clearly with this toy example than with a full example from
the dataset (which contains thousands of word types). These sample documents resemble the
final product of all preprocessing and text normalization techniques described earlier. The
Dictionary is an index of the unique word types in the corpus of Doc 1 and Doc 2. Below
each document is its bag-of-words representation - a list of indexes and counts. For example,
the tuple (1,2) in Doc 1 indicates that word 1 (headache) appears 2 times. Doc 3 was
not used to construct the dictionary and contains an out-of-vocabulary word (hypertension),
which is ignored in its bag-of-words representation using this dictionary.
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Classification using Bag-of-Words

The standard bag-of-words representation is already suitable for use as a feature vector, since

each term can be treated as a feature dimension with a value equal to the term frequency

within a given document. Such features were shown to be promising with this dataset in

preliminary work on this project, as seen in Bullard et al. [2015]. This representation is very

sparse, since any document will only contain a small subset of the corpus-wide vocabulary,

resulting in many zero-valued features. Sparse storage formats are available and usable

for classification, however, dimensionality reduction is common practice to help improve

classification performance when operating in a sparse feature space. This is explored here

through topic modeling, explained below in Section 6.1.4.

6.1.3 Tf-idf

An extension of the standard bag-of-words representation is to weight the terms based on

their distribution in the corpus using tf-idf, or term-frequency inverse-document-frequency.

The idea of tf-idf is that words which appear many times in fewer documents may be more

meaningful than words which appear across many documents. Using tf-idf, a term wi in

document dj is weighted by

tfidf(wi, dj) = term freq(wi, dj)× log2

(
D

doc freq(wi)

)
(6.1)

where term freq(wi, di) is the frequency of wi in dj, doc freq(wi) is the number of docu-

ments containing wi, and D is the number of documents. Thus higher weights are assigned

to terms which appear more times in fewer documents, and lower weights to terms which

appear fewer times and/or in more documents. The feature space of tf-idf is identical to

that of standard bag-of-words, but the values for each feature are equal to the weights, as

defined above. Tf-idf is often used to achieve performance improvements over the standard

bag-of-words representation, as is the goal of its application here.
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6.1.4 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is a generative model for identifying

topics of related terms in a text corpus1. Under LDA, a corpus D consisting of M documents

is assumed to contain a fixed number of topics K. The value of K is a parameter for

the model. The initial proportions of the topics in the corpus are assumed to be drawn

from a Dirichlet distribution (hence the name of the algorithm). A Dirichlet distribution is

parametrized by a vector α of real numbers, and its probability density function returns a

multinomial distribution. For a simple illustration of this concept, consider a typical six-

sided die - essentially a multinomial distribution over six possible outcomes. If there was

a bag full of dice, each weighted differently, and one was pulled out at random, this would

be sampling from a Dirichlet distribution (i.e. the bag is the Dirichlet distribution that

yields a die, which is multinomial). Dirichlet distributions are a common choice for priors

in Bayesian statistical models such as LDA. In the case of LDA, each topic is a multinomial

distribution over the vocabulary of the corpus, drawn from a Dirichlet distribution, denoted

φk ∼ Dir(β). Similarly, each document is a multinomial distribution over the set of topics

in the corpus, also assumed to have a Dirichlet prior, denoted θi ∼ Dir(α). This process

is written formally in Figure 6.4 and a visualization in plate notation is shown in Figure

6.5. Working backwards, the probability of each term in a document is determined by the

term distribution of its topic, which is in turn determined by the topic distribution of the

document. This can be written formally as:

P (wj | di; θ, φ) =
K∑
k=1

P (wj | zk;φk)P (zk | di; θi) (6.2)

1LDA has been applied to image data as well [Wang et al., 2009]; the description here considers text.
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Let D be a corpus of M documents with Ni terms

Let K be the pre-determined number of topics

1. Draw θi ∼ Dir(α), i ∈ {1, . . . ,M}
2. Draw φk ∼ Dir(β), where k ∈ {1, . . . , K}
3. For i ∈ {1, . . . ,M}

(a) For j ∈ {1, . . . , Ni}
i. Draw topic zij ∼ Mult(θi)
ii. Draw word wij ∼ Mult(φzij)

Figure 6.4: Generative process of Latent Dirichlet Allocation (LDA).

α

β

θ z

φ

w

K

M
N

α, β parameters for Dirichlet priors

θ topic distribution for current document

φ word distribution for current topic

z topic of current word

K number of topics

M number of documents

N number of words in current document

Figure 6.5: Plate notation for Latent Dirichlet Allocation (LDA). Arrows indicate a genera-
tive process and rectangles represent a repetition of the contained nodes. Each document is
a distribution (θ) over K topics, and each topic is a distribution (φ) over the vocabulary of
the corpus. The probability of a word (w) is based on the current topic (z) in the current
document.

Computing the actual distributions is intractable and is approximated through Bayesian

inference methods. Blei et al. [2003] used variational Bayes approximation in the original

paper, but Gibb’s sampling is also commonly used. This thesis performs LDA using the

Stanford Topic Modeling Toolkit (TMT) with collapsed variational Bayes (CVB) [Teh et al.,

2007]. The Stanford TMT can also implement Gibbs sampling, but CVB converged on more

sensible topics and performed better in classification during development.
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Additional Preprocessing

Since topics are determined based on statistical relationships of words, extremely infrequent

terms are unlikely to correspond to anything at all. Similarly, terms that appear in too

many documents will end up being related to too many other terms. The effectiveness of

modeling can be hampered in either case. For these reasons, it is common practice to filter

the vocabulary [Boyd-Graber et al., 2014, p. 9]. This is addressed here by filtering out terms

appearing fewer than 3 times, as well as filtering out the 30 most common terms. Other

values were explored initially, but these appeared to suit the data.

Dimensionality Reduction and Classification using LDA

Although LDA is typically employed for unsupervised exploration of large corpora, it can

also be thought of as a form of dimensionality reduction for bag-of-words. As mentioned

earlier, bag-of-words is a sparse representation, with thousands of word features, the ma-

jority of which are absent for any given document. In LDA, each document is defined as a

probability distribution over K topics, with K typically being relatively small. Each topic

can be considered a feature whose value is equal to the probability of that topic within a

given document, thus the feature space is K-dimensional. This reduction in dimensionality

may be beneficial for classification, provided that the trained LDA model adequately rep-

resents the linguistic relationships in the data. A commonly used algorithm specifically for

dimensionality reduction is Principal Component Analysis (PCA), which finds linear combi-

nations of the feature dimensions that best explain the variance in the data. An issue is that

the latent variables produced by PCA are not easily interpretable by humans, which is one

of the key considerations of this thesis. One advantage of LDA as a form of dimensionality

reduction is that the resulting output is a collection of topics which can be recognized or

understood through human intuition, in addition to potentially improving the performance

over simpler text features.

37



www.manaraa.com

6.1.5 Structured Features

The source and preparation of the structured data were described already in Section 4.4.

As was briefly mentioned in that section, a potentially meaningful distinction can be made

between structured data which comes from cognitive assessments and those which come from

other biophysical tests or markers. Namely, cognitive assessments are verbally administered

by a clinical professional, and thus include another person’s mind and expertise in order

to reach those structured data values present in the utilized dataset. This differs from

other major sources of structured data from the ADNI, which consist of cerebrospinal fluid

markers and brain volume measurements, all of which are measurements to be interpreted

by a physician after their collection. Essentially, the cognitive assessment scores in the

dataset are the outputs of professional interpretation, whereas the other structured data are

inputs for future interpretation. This distinction was initially explored in collaborative work

[Bullard et al., 2015] and is replicated here by experimenting with the inclusion and exclusion

of the three cognitive assessment score features.

6.1.6 Integration with Structured Data Models

The resulting feature vectors and trained models of the structured data analysis described

above are used in conjunction with the those of the unstructured for the integration exper-

iments. Integration is performed on each unstructured modeling experiment (bag-of-words,

tf-idf, and LDA) and each structured (with and without cognitive assessment features). In

the case of LDA, only the models/parameters with the highest performance are used in inte-

gration. Two integration techniques are described below: one which focuses on integrating

at the feature level, and one which focuses on integrating the outputs of the two different

models.
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Vector Concatenation

The most intuitive way of integrating the features is to simply concatenate the feature vectors

for structured and unstructured data. The term concatenation here refers to treating two

vectors of length n and m as lists, and joining them to form a new vector/list of length

n+m. This concatenated feature factor can be used in classification to determine new class

outputs for each subject.

Posterior Probability Composition

A more sophisticated method of integration is to take advantage of posterior probabilities

from the individual classification models. For each input, a logistic regression classifier

produces a posterior probability of each class label (i.e. a distribution over the class labels),

selecting the most probable as its output. One classifier is trained on structured data features

Xs, and a second on unstructured data features Xu, resulting in two posterior distributions.

The probability of a particular class Ck is then denoted as p(Ck | Xs, Xu). If these distribu-

tions are assumed to be conditionally independent with respect to class label, then Bayes’

theorem can be leveraged as follows:

p(Ck | Xs, Xu) ∝ p(Xs, Xu | Ck) p(Ck)

∝ p(Xs | Ck) p(Xu | Ck) p(Ck)

∝ p(Ck | Xs) p(Ck | Xu)

p(Ck)

(6.3)

From here, the class label with the highest probability is selected as the output. This

methodology is explained in Bailer-Jones and Smith [2011], and it was implemented with

bag-of-words modeling on a different subset of the ADNI data in Bullard et al. [2015].
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6.2 Classification Experiments

Each subject in the dataset is annotated with one of four class labels indicating their dementia

status - Normal (NL), Early MCI (EMCI ), Late MCI (LMCI ), or Alzheimer’s disease (AD)

- of its corresponding subject. Each of these subjects has unstructured and structured data,

which are used separately, and later integrated, as instances for classification where the goal

is to assign the correct class label. Two different classification problems are reported on:

one using the standard labeling scheme of the dataset, and another designed to address an

alternative interpretation of the original problem. These problems are explained below and

their results are given in separate tables later in Section 7.

6.2.1 Labeling Schemes

Standard ADNI classes The first problem uses the four class labels as they appear

in the ADNI study: NL, EMCI, LMCI, and AD. The distinction between early and late

mild cognitive impairment (EMCI and LMCI ) may be imprecise, and the resulting class

confusion will hurt classification performance, but they were explicitly assigned by the clinical

professionals in the study and therefore it makes sense to leave them as-is, rather than

combine them. This 4-class problem is henceforth referred to as Standard.

Early Risk As discussed in Chapter 1, early detection of dementia is critical. It follows

that a group of particular interest would be the early mild cognitive impairment (EMCI )

subjects, as they represent the beginning of the disease progression. It would be useful to

be able to distinguish those two groups in particular. There are 367 subjects having one of

these two class labels (187 NL, 180 EMCI ), and only this subpopulation can be used for this

experiment. While this does not perfectly match the reality of diagnosis because it excludes

the later stages, it could be argued that those later stages are in less need of automatic

analysis since they are more easily observable than the earlier ones. This binary problem is

henceforth referred to as Early Risk.
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6.2.2 Logistic Regression Classifier

The primary integration method described in Section 6.1.6 depends on posterior probabilities

being directly computed by the classification models. For this reason, the popular logistic

regression was chosen as the algorithm for all classification experiments performed for this

thesis. Logistic regression is a linear classifier, meaning that its decision function is an

equation of one variable for each feature with a coefficient. The magnitude of the coefficient

corresponds to the feature’s relative importance to the decision, and the sign indicates which

class is favored by a larger value for that feature. Logistic regression is a binary classifier,

but is extended to multi-class problems through a 1 vs. all approach, in which each class

label is tested against the collection of all other class instances (e.g. NL vs. not-NL, EMCI

vs. not-EMCI, etc.). This is is implemented in the scikit-learn library used here.

Parameter Tuning

Parameters of a classification algorithm can have a great deal of impact on its performance.

For the logistic regression, the two parameters of interest are C, the inverse of regularization

strength2, and the penalty function, either the L1 or L2 vector norm. A smaller C correspond

to harsher penalties for large coefficients. The values of these parameters are selected through

a grid search of possible values, evaluated by accuracy in cross validation on the bag-of-words

dev data only, as the unstructured features are the main focus of the thesis.3 The process is,

however, repeated for each labeling scheme. Table 6.4 summarizes the selected parameters.

Labeling Scheme C Penalty

Standard 1.0 L2

Early Risk 10.0 L1

Table 6.4: Logistic regression parameters selected through cross-validated grid search on the
training data. The C parameter was tested at powers of 10 from −5 to +3.

2It is common in other sources to use λ for the regularization strength, but the scikit-learn library
instead uses C = 1/λ, i.e. the inverse of regularization strength. This is an implementation choice.

3Repeating this process on every feature input type could improve performance, but is not done here in
the attempt to keep this experimental condition stable.
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6.2.3 Evaluation

This section provides an explanation of the underlying implementation decisions for classi-

fication experiments, and how those decisions address potential experimental issues. There

are two main evaluation procedures for classification performance, explained below.

Held-out Data

The dataset is randomly split into 80% (n = 544 documents) for model development (dev

set), and 20% (n = 135 documents) for final evaluation (held-out set). Models are only

exposed to the held-out set after satisfactory performance is achieved using only the dev set.

This is standard practice in supervised machine learning. The roughly even class distribution

in the corpus and randomness of the data split produces approximately class distributions

in the dev and held-out sets. Results from final held-out testing of each modeling stage are

explained in detail in the corresponding subsections of Section 7.

Leave-one-out Cross-validation (LOOCV)

All development of classification models on the dev set uses leave-one-out cross-validation

(LOO or LOOCV), a variation of k-fold cross-validation. In k-fold cross-validation, the data

is split into k segments, each containing 1/k data points, so that one segment can be used

for testing a model trained on the other k − 1 segments. This process is repeated k times

(folds) such that each segment has been used for testing once, and no segment is used for

both training and testing within the same fold. Leave-one-out cross-validation is a special

case where k is equal to the number of training instances, n, resulting in n folds each testing

on exactly one data point. This version of cross-validation is used because it minimizes bias,

and it additionally provides clearly interpretable performance metrics with one confusion

matrix generated from the whole process. This is implemented using the scikit-learn

machine learning library [Pedregosa et al., 2011] in Python.
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Although the dev and held-out sets have similar class distributions, overfitting is still a

potential issue. For this reason, after the previously described held-out evaluation is com-

plete, a LOOCV procedure is run on the entire dataset to serve as an additional evaluation.

6.3 Topic Exploration and Evaluation

The most influential parameter in LDA is the number of topics. Tuning of this parameter

is essential to finding an appropriate model. LDA is being used here with two goals in

mind: to improve classification performance as a form of dimensionality reduction, as well

as to provide human-interpretable topics. The former is more convenient and appropriate

in the context of this work, but does not necessarily imply good results for the latter. The

interpretability of the best LDA models in classification are examined with various per-

topic metrics known to correlate well with human evaluations (see below). Tuning of the

topic number K is performed by iteratively measuring classification accuracy at values of K

ranging from 5 to 100, at multiples of 5. The best-performing reduced topic-feature space is

selected for classification results and additionally analyzed using the following metrics:

Topic Coherence Topic coherence, defined by Mimno et al. [2011], measures how often

the most probable words of a topic appear together in documents. The coherence of

topic t is defined as C(t, V (t)) =
∑M

m=2

∑m−1
l=1 log

D(v
(t)
m ,v

(t)
l )+1

D(v
(t)
l )

, where V (t) is the top M

words from topic t, D(v
(t)
l ) is the document frequency of word v

(t)
l , and D(v

(t)
m , v

(t)
l ) is

the co-document frequency of words v
(t)
m and v

(t)
l (the number of documents in which

both terms occur). This metric captures how often the most probable words of a topic

co-occur in the corpus, and was shown to match well with human evaluation of topic

quality in the original paper.

Topic Size The size of a topic t is equal to the number of word tokens in the corpus which

have been assigned topic t. Larger topic size typically correlates with human-perceived

topic quality [Boyd-Graber et al., 2014].
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These metrics are useful because some topics in a given LDA model will be meaningless

or nonsensical, as was described earlier in Section 2.2.2. The metrics above are employed to

filter out those topics, with topic coherence being of particular interest. Other topic quality

metrics exist, but the two above appeared more interesting for this application and thus were

included for evaluative topic exploration.
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7 Results and Discussion

This chapter presents experimental results for the labeling schemes outlined in Section 6.2.1,

each of which has its own section discussing performance and tuning of each feature rep-

resentation and data modeling technique. The previous chapter described the reasoning,

implementation, and design of all modeling and experimentation, and this chapter therefore

centers on the presentation and discussion of results.

7.1 Classification of Standard Labels

Classification results for the Standard labeling scheme (4 classes) are shown in Table 7.2 on

page 52. The upper parts of the table shows the results with structured vs. unstructured

data features in isolation, while the rest of the table shows results of integration techniques.

Keep in mind that the held-out evaluation was performed on data which were not used in

any development, while the leave-one-out cross-validation (LOOCV) makes use of the entire

merged dev and held-out sets to either confirm or call into question the trends seen in held-

out testing. It can be noted in many places in the table that the performance improved in

LOOCV, with a few exceptions (e.g. tf-idf ), which is likely due to the greater number of

available training instances in this evaluation method. Importantly, the relative performance

differences between each modeling stage are comparable.

7.1.1 Performance of Structured vs. Unstructured Features

The performance of the structured data alone was substantially higher than the majority

class baseline, more so when cognitive assessment score features were included (+cognitive

45



www.manaraa.com

in Table 7.2). The performance of the bag-of-words representation for unstructured data

approached that of the structured data sans cognitive assessment scores, falling short by

a few percentage points, but was not as close when cognitive scores were included in the

structured data modeling. Importantly, bag-of-words features still considerably improved

upon the baseline, showing that even simple modeling of unstructured text data can be useful

in its own right in the common event that structured data are missing. These observations

are expected, given the early work presented in Bullard et al. [2015] on a similar subset of

the ADNI data, and the fact that structured data have been regularly used for similar tasks

in the past, as discussed earlier in Chapter 3.

The tf-idf representation improved on bag-of-words in the held-out evaluation, as well as

matching the performance of structured data with cognitive features (and exceeding them

without), but becoming seemingly worse in the LOOCV evaluation. One possible explanation

for the lack of stability of tf-idf in these two cases is that, given the influence of document

frequency, some important terms may have been quite different after merging the dev and

held-out sets. This issue would not be observed in regular bag-of-words. Also, there are a

number of variations of tf-idf weighting, which may affect its utility in text classification.

In the case of latent Dirichlet allocation (LDA), the number of topics greatly influenced

the performance of classification, as can be seen in Figure 7.1, which shows the change in

classification accuracy on the held-out set at multiples of five topics from 5 to 100. The

figure indicates the performance of bag-of-words and tf-idf as lines for comparison. Two

close peaks are noted at K = 60 and K = 85, both of which outperform bag-of-words, but

neither of which matches tf-idf. There are various reasons why LDA was bested by tf-idf,

namely that the reduction in dimensionality may also be a reduction in information, which is

likely the case for the values of K which are below even the regular bag-of-words line in the

figure. This does demonstrate, however, that the dimensionality reduction of bag-of-words

provided by LDA can improve performance. It may be more useful if dealing with very

large datasets. The full classification results for these LDA features from these two models
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are given in Table 7.2. Comparing the held-out and LOOCV results in Table 7.2, it can

be seen that this choice of topic number is likely tied to the dev set in particular, as their

classification accuracy drops by over 10% in LOOCV. This is a limitation of using LDA,

an unsupervised algorithm, for a supervised task; the class labels are introduced after the

topic model is built, and thus any supervised metric based on it will depend heavily on the

training data.
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Figure 7.1: Accuracy of LDA-reduced features on the held-out set as the number of topics K
increases (by multiples of 5). Lines indicating the performance of bag-of-words and tf-idf are
shown for comparison and obviously do not change with the topic number of LDA. The two
local maxima for LDA which surpass the performance of bag-of-words are labeled (K = 60
and K = 85).
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The result above was to be expected, but recall that the argument for the use of LDA

in this thesis is that the latent topics should additionally be interpretable. This can be

evaluated through various metrics from the literature described earlier in Section 6.3, but it

was noted during experimentation that the topic coherence and topic size metrics appeared

to be the most useful. Topics from the 60-topic LDA model were ranked separately by each

of these two metrics, and the top ten topics based on each are presented in Tables 7.1a and

7.1b on page 49. The coherence metric appears to live up to its name. For example, topics

2 and 33 are both about cognitive assessments and cognitive problems, respectively. The

former also includes an age reference to people in their 60’s, a time that is often associated

with dementia. Topics 45 and 16 both pertain to regular medical visits (PCP is primary

care physician), with the former seeming to be about typical problems or concerns associated

with age (back, heart, dizziness), while the latter contains references to medications (taking,

OTC = over the counter, medication). Another good example is topic 25, which is clearly

about heart attacks (cardiac, stent, chest pain, AE = adverse event) and their accompanying

emergency visits (hospitalization, admitted, discharged). Some of the most coherent topics

also rank in the top ten based on topic size (Table 7.1b), namely topics 2, 33, 16, and 25.

This is interesting, as it indicates that the topics contain frequently co-occurring words that

together account for a larger fraction of the overall word tokens in the corpus.
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7.1.2 Performance of Integration

The goal of integrating the unstructured features and models with those of the structured

ones is to improve classification performance over either in isolation. The results of two

integration methods, vector concatenation and posterior probability composition, are pre-

sented using combinations of each of the four unstructured models identified and described

in the previous section, along with the structured features, with and without cognitive as-

sessment scores included, yielding 16 integrated models (See Table 7.2) For clarity, these

results are discussed in the same order of unstructured feature groups as in the previous

section: bag-of-words, tf-idf, then LDA.

In held-out testing, integration with bag-of-words features improved performance over

both the bag-of-words and corresponding structured features in all cases. Interestingly, in-

tegrating bag-of-words with the cognitive assessment scores excluded actually outperformed

the structured features when they are included, further strengthening the argument in fa-

vor of unstructured text modeling. In LOOCV, however, this did not hold for the cases

where cognitive features were included, with the performance falling slightly below that of

the structured in isolation. There was a similar pattern for tf-idf integration, with all but

two cases successfully outperforming its constituent feature types: held-out with cognitive

features excluded for both integration methods. Examples such as this are likely attributable

to random divisions of the dev and held-out sets.

The LDA-reduced features are again less consistent than the other unstructured features,

just as discussed in the previous section. In five out of the eight cases for held-out testing

and six out of eight cases in LOOCV, integration with LDA produced performance gains.

The most noticeable exceptions are with posterior probability composition without cognitive

features in the held-out evaluation, for which the accuracy dropped by around 5%. This is

not seen in cross-validation for these experiments, however, so it may too be a product of

initial set divisions. In general, the LDA integration experiments seem to be somewhat
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more robust between held-out and cross-validation than they were when LDA features were

used alone. A possible explanation for this is that the structured features may be taking on

the brunt of the classification work (i.e. being weighted more heavily in the case of vector

concatenation, or consistently assigning high enough probabilities to the correct class labels

to overpower the LDA models), and thus increasing the stability of those experiments.

It was predicted that the more sophisticated posterior probability composition method

would yield better results than vector concatenation. The outcome appears to be less con-

sistent, with many cases being the opposite of that prediction, namely when excluding cog-

nitive assessment features (except for some in LOOCV). Yet overall, the best performing

cases include results where integration is done by this method, cognitive features included.

One potential limitation of posterior probability composition is that a stronger decision is

made when all of the underlying classifiers produce an asymmetric posterior class distri-

bution. Models which do not make strong or accurate decisions themselves may hurt the

performance in integration using this method. Vector concatenation is not subject to this

limitation, although it has the drawback of potentially overwhelming a smaller dense feature

set with a larger sparse one.

7.1.3 Class-specific Performance

It is also interesting to examine the performance on a per-class basis using the precision and

recall values presented in Table 7.2. In nearly all integration experiments, the NL (normal)

and AD (Alzheimer’s disease) patients had higher precision and recall scores than the two

MCI classes. This is not surprising, given the stark contrast between patients on the two

opposite ends of the disease spectrum (NL and AD), and the relative lack of diagnostic

ambiguity when compared to EMCI and LMCI. This pattern is less pronounced in some of

the isolated unstructured feature experiments.
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7.2 Classification of Early Risk

In addition to the experiments with the original labeling scheme, the sub-problem of dis-

tinguishing the normal (NL) subjects from the early mild cognitive impairment subjects

(EMCI ) was also explored, as this represents the earliest point in the progression to Alzheimer’s

disease (AD). The same classification approach described in the previous section is also used

here, except that only leave-one-out cross-validation (LOOCV) is performed because the

subsampling of NL and EMCI subjects slightly distorts the class distributions in the orig-

inal held-out set. LOOCV may inflate the performance metrics slightly, but the relative

performance between feature and model types is ultimately of more interest for this anal-

ysis. The results for the Early Risk classification are given in Table 7.4 on page 57 and

discussed below.

7.2.1 Performance of Structured vs. Unstructured Features

As with the Standard labeling scheme, all structured and unstructured feature types are well

above the majority class baseline (51% in this case). Similarly, including cognitive features

produced performance gains. One major difference here is that all unstructured data types

outperformed the structured features when cognitive assessments were excluded, as opposed

to only the bag-of-words in the Standard problem. This is interesting because it suggests a

potential linguistic differences in clinical notes at the onset of mild cognitive impairment.

The number of LDA topics was selected the same way as before (except using the whole

Early Risk subsample, as opposed to the Standard dev set), as seen in Figure 7.2. The

figure shows lines for the structured feature models as well, as some of the metrics are more

comparable here than they were in the previous experiment. The two peaks at K = 65 and

K = 100, each achieving the same classification accuracy, managed to almost match the

tf-idf features. However, bag-of-words was the winner for the unstructured feature types in

isolation. It is important to note that any difficulties LDA faced in the Standard problem
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are also faced here, i.e. small sample size and small vocabulary, and thus similar performance

shortcomings are observed. The ability to approximately match tf-idf performance is still

noteworthy since the LDA features are a smaller and denser representation than tf-idf, which

may be more easily interpretable by clinical professionals who would be using such models

and might derive information from them.

10 20 30 40 50 60 70 80 90 100

55%

60%
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Classification Accuracy vs. Number of LDA Topics

Bag-of-words
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LDA

Structured (−cognitive)
Structured (+cognitive)

Figure 7.2: Accuracy of LDA-reduced features as the number of topics K increases (by
multiples of 5). Lines indicating the performance of bag-of-words and tf-idf are shown for
comparison and obviously do not change with the topic number of LDA. Structured feature
performance is also shown here. The two local maxima for LDA which slightly surpass the
performance of bag-of-words are labeled (K = 65 and K = 100).
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Tables 7.3a and 7.3b show the top 10 topics from the 100 topic model trained on the Early

Risk subset, based on topic coherence and topic size metrics, respectively. One consequence

of the smaller sample of subjects is that the vocabulary becomes smaller and the strength

of statistical judgments weakens, resulting in topics that are less interesting, despite their

performance as classification features. In this case, only a few of the most coherent topics

seem to make sense, namely Topics 25, 36, 38, and 56, which appear to be about cognitive

evaluations, smoking habits, routine visits/tests, and cardiac issues, respectively. Topic 55

is a good example of a chained topic [Boyd-Graber et al., 2014, p. 17], where unrelated

words are linked together through shared co-occurring words, in this case with left and

right seeming to link eye and hand, along with their associated terms cataract and arthritis.

Ranking the topics by the topic size metric produces an almost entirely different list, with

only Topic 25 in common. In this case, Topic 94 seems to be mostly about depression or

related symptoms, which can commonly occur with dementia. Overall, these results do not

quite match what was seen in the LDA models trained on the whole dataset in the previous

section, presumably due to the smaller and more distinct sample size and vocabulary.

7.2.2 Performance of Integration

The performance trends for the integrated models are slightly more consistent here than

they were for the Standard classification problem. When cognitive assessment scores are

excluded, all integration experiments result in an at least modest improvement, although

there is little to no difference between the vector concatenation and posterior probability

composition methods. This may suggest that results can be achieved without extra sophis-

tication provided by the latter, or that more sophistication is needed beyond either of these

techniques. This is discussed later in Section 8.1. When all structured features are included,

accuracy improves by about 1% in most cases, with tf-idf being the best, around 3% above

structured alone. This is in line with the Standard problem, in which the best performance

in LOOCV was achieved with tf-idf and all structured features. In general, these results

further justify the integration of unstructured and structured features and/or models.
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Leave-one-out Cross-validation

NL EMCI

Features Acc. P/R P/R

Baseline 51.0% 51/100 −/0

Structured (−cognitive) 67.6% 67/73 69/62
Structured (+cognitive) 79.8% 78/84 82/76

Bag-of-words 70.8% 71/73 71/69
Tf-idf 69.2% 68/75 71/63
LDA(K = 65) 68.9% 67/76 71/62
LDA(K = 100) 68.9% 68/74 70/63

S−cog ∪ Bag-of-words 76.8% 76/79 78/74
S−cog ⊕ Bag-of-words 76.0% 77/77 76/76
S+cog ∪ Bag-of-words 77.1% 76/80 78/74
S+cog ⊕ Bag-of-words 80.7% 80/82 81/79

S−cog ∪ Tf-idf 72.2% 71/78 74/66
S−cog ⊕ Tf-idf 72.8% 71/79 75/66
S+cog ∪ Tf-idf 80.7% 79/85 83/77
S+cog ⊕ Tf-idf 83.1% 82/86 84/81

S−cog ∪ LDA(K = 65) 72.2% 71/78 74/67
S−cog ⊕ LDA(K = 65) 72.5% 71/78 74/67
S+cog ∪ LDA(K = 65) 79.0% 78/82 81/76
S+cog ⊕ LDA(K = 65) 79.3% 78/83 81/76

S−cog ∪ LDA(K = 100) 71.4% 70/77 73/66
S−cog ⊕ LDA(K = 100) 71.9% 70/76 74/66
S+cog ∪ LDA(K = 100) 80.4% 80/82 81/78
S+cog ⊕ LDA(K = 100) 80.9% 80/83 82/79

Table 7.4: Classification performance on Early Risk labeling scheme (2 classes) for each
modeling technique and feature group. Structured features with and without cognitive fea-
tures are referenced in the lower sections of the table using the shorthand S+cog and S−cog,
respectively. Integration by vector concatenation is indicated by ∪, and posterior probability
composition by ⊕.
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8 Conclusion

This thesis examined the incorporation of unstructured text (natural language) data from

electronic clinical records for the task of classifying dementia progression status of subjects

in a study on Alzheimer’s disease, and additionally explored integration of these data and

models with those of structured data. This predictive modeling approach would be beneficial

for intelligent diagnostic support systems for automatic screening of patients’ electronic

data. Results and experiments with unstructured data indicated its viability as a source

of useful features for dementia classification, either as a complement to available structured

data, or in isolation when structured data are missing, as may often be the case for a

condition like dementia. The topic modeling algorithm latent Dirichlet allocation (LDA)

was also explored as a form of interpretable dimensionality reduction, for both classification

performance evaluation and corpus characterization. The LDA results appear promising in

some circumstances, but their instability in classification would need to be further examined

in future work.

8.1 Limitations and Future Work

Processing and Modeling

One text processing task that was not performed here was word-sense disambiguation (WSD),

which aims to resolve ambiguities at the meaning-level (senses of a word) rather than the

lexical level (written form of a word). For example, the word patient has a different sense
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in the patient has dementia than it does in he was a patient man. This process could be

beneficial for topic modeling in larger datasets with less restricted vocabulary, but the corpus

used here is relatively small and contains highly specific language. WSD relies on part-of-

speech tagging, which could add challenges as well, given the specialized medical lexicon and

shorthand grammar. This is compounded by the relatively small size of the dataset, which

would likely only be made sparser by WSD. For these reasons, it was omitted here, but may

be explored in future work.

Classifier Choice

The choice of logistic regression as the classification algorithm for all experiments was based

on its direct computation of a posterior probability over the class labels, as this was a

requirement for one for the integration techniques. Logistic regression is not the only example

of such an algorithm, but it is commonly used and accepted. One its main drawbacks is the

need to tune parameters of the model. An alternative for future work is the Relevance

Vector Machine (RVM) [Tipping, 2001], a sparse Bayesian model which eliminates the need

for parameter selection and additionally produces sparse probabilistic output. Mainstream

software packages are not currently available, and while it is outside the scope of this thesis,

it appears a potentially interesting direction for future work.

Topic Modeling for Classification

The standard form of latent Dirichlet allocation (LDA) used here is an unsupervised algo-

rithm meant for exploration and characterization of large text corpora. This thesis attempted

to use it for an alternative application of dimensionality reduction of sparse bag-of-words

models for use in a supervised machine learning task. There are, however, supervised revi-

sions of the original LDA algorithm which incorporate class labels into the generative model,

and may be applicable in subsequent experimentation. Popular examples include supervised

LDA (sLDA) [Blei and McAuliffe, 2007] and labeled LDA (L-LDA) [Ramage et al., 2009].
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Although sLDA seems appealing, it incorporates a continuous response variable rather than

a discrete class label. Another version of sLDA was implemented by Wang et al. [2009]

for image labeling and annotating images, but this requires both a class label and a list

of annotations, as would be found on tagged images, but is not applicable to the ADNI

dataset. Finally, L-LDA expects multiply labeled documents, such as articles with keywords

or tagged web pages, which is also not applicable to this dataset. As explained by Ram-

age et al. [2009], using L-LDA with a corpus containing only singly labeled documents is

equivalent to multinomial naive Bayes. Thus it would not be appropriate for the goal of this

thesis.

Evaluation of Latent Topics

The computational metrics used in this study (see descriptions in Section 6.3) have been

correlated to human evaluation in the past, but it would be interesting in the future to per-

form human evaluation experiments directly. Such procedures are described by Chang et al.

[2009] and are popularly used to judge latent topics produced by LDA. The word intrusion

task presents human evaluators with high probability terms of a randomly chosen topic, with

an additional low probability word from that topic, which is to be identified by the evalu-

ator. The intruding word should be easily identifiable in a good topic, as high probability

terms should relate to each other more strongly to they do to the intruder, whereas in a bad

topic, the relationships will be harder to determine, and thus the intruder will not stand out.

This would require IRB approval for such human involvement in experimentation, as well as

access to a large enough pool of dementia specialists necessary for the score calculations of

the task. Accordingly, it is left for future work.

Temporal Analysis

This thesis centers around dementia, a condition that may develop over a person’s life with

neither a clear onset nor a well-understood cause. Cognitive and mental illnesses, along
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with other long-term diseases such as cancers, may require more data and historical context

for effective predictive modeling. Analysis of temporal ordering has been implemented in

structured medical data [Batal et al., 2013, Wang et al., 2008], but its role in research on

unstructured text data has focused on extraction of temporal expressions [Harkema et al.,

2005, Zhou et al., 2006], rather than modeling how a patient’s EHR texts changes over time

in relation to a disease condition. Specifically, there is potential for interesting temporal

analysis using topic models. Changes in the prominence of topic or topics over time, or even

simply their prominence at a particular time, may provide important information and be

useful in classification. For example, in a study by Hall et al. [2008], LDA was performed

on 12,000 papers from the ACL Anthology archive, spanning 28 years, to model changes

and trends in topics of computational linguistics research over time. Similar work might be

possible on a larger and more diverse electronic medical dataset. Although the ADNI dataset

does contain time-ordered information, it is simply too small to be effectively analyzed in

this way. In contrast, this would be worthwhile to explore on distinct data, such as large

scale electronic medical records.
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